Q.P. Code: 19CE0116

R19

ŀ	Reg. No:		
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR			
(AUTONOMOUS)			
B.Tech III Year I Semester Regular Examinations December-2021			
HYDRAULIC ENGINEERING			
	(Civil Engineering)		
Time: 3 hours Max. Marl			s: 60
(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I		
1	Derive the condition for a trapezoidal channel to be most economical.	L1	12M
	OR		
2	a Derive the condition for a trapezoidal channel to be most economical.	L1	6M
	b The discharge of water through a rectangular channel of width 6.5m is 20m ³ /sec. When the depth of flow of water is 1.8m. Calculate: (i) specific energy of the	L3	6 M
	flowing water (ii) critical depth and critical velocity.		
	UNIT-II		
2			107.5
3	What are assumptions of gradually varied flow? Derive the Dynamic equation of gradually varied flow.	LI	12M
OR			
4	a A hydraulic jump forms at the downstream end of spillway carrying 17.93 m ³ /s	L3	6M
	discharge. If depth before jump is 0.80 m, determine the depth after the jump and		
	energy loss.b Write about the classification of bottom channel slope.	L1	6M
	b Write about the classification of bottom channel slope. UNIT-III	LI	OIVI
5	a Derive the equation for force exerted by a jet on stationary inclined flat plate.	L3	6M
3	b Find the force exerted by a jet of water of diameter 90mm on a stationary flat plate,	L3	6M
	when the jet strikes the plate normally with velocity of 25m/s.	Ш	OIVE
	OR		
6	A jet of water of diameter 7.5 cm strikes a curved plate at its centre with a velocity of	L3	12M
	20m/sec. the curved plate is moving with a velocity of 8 m/sec in the direction of jet. The jet is deflected through an angle of 165°. Assuming the plate smooth. Find		
	i) Force exerted on the plate in the direction of jet		
	ii) Power of jet		
	iii) Efficiency of jet		
UNIT-IV			
7	A centrifugal pump discharges 0.15 m ³ /sec of water against a head of 12.5 m, the	L3	12M
	speed of impeller being 650 r.p.m. The outer and inner diameter of impeller are 500		
	mm and 200 mm respectively and the vanes are bent back at 350 to the tangent at exist. If the area of flow remains 0.07 m ² from inlet to outlet, calculate		
	(i) Manometric efficiency of pump (ii) Vane angle at inlet (iii) Loss of head at inlet to		
	impeller whenthe discharge is reduced by 35% without changing the speed.		
	OR		أرطيانا
8	a What are different types of dimensionless numbers? Explain them.	L1	6M
	b Define the terms: model, prototype, hydraulic similitude.	L1	6 M

Q.P. Code: 19CE0116

R19

UNIT-V

a What is a turbine and give the classification in detail. L1 **6M b** A Pelton wheel is to be designed for a head of 60m when running at 200r.p.m. The **6M** pelton wheel develops 95.6475kW shaft power. The velocity of the buckets =0.45times the velocity of the jet, overall efficiency=0.85and co-efficient of the velocity=0.98. OR 10 a What are the uses of draft tube? Describe with neat sketches different types of L2 **6M** draft tube. L₂ **b** What is specific speed, derive the equation for specific speed. **6M**

*** END ***